Growth of Methanosarcina barkeri (Fusaro) under nonmethanogenic conditions by the fermentation of pyruvate to acetate: ATP synthesis via the mechanism of substrate level phosphorylation.

نویسندگان

  • A K Bock
  • P Schönheit
چکیده

A mutant of Methanosarcina barkeri (Fusaro) is able to grow on pyruvate as the sole carbon and energy source. During growth, pyruvate is converted to CH4 and CO2, and about 1.5 mol of ATP per mol of CH4 is formed (A.-K. Bock, A. Prieger-Kraft, and P. Schönheit, Arch. Microbiol. 161:33-46, 1994). The pyruvate-utilizing mutant of M. barkeri could also grow on pyruvate when methanogenesis was completely inhibited by bromoethanesulfonate (BES). The mutant grew on pyruvate (80 mM) in the presence of 2 mM BES with a doubling time of about 30 h up to cell densities of about 400 mg (dry weight) of cells per liter. During growth on pyruvate, the major fermentation products were acetate and CO2 (about 0.9 mol each per mol of pyruvate). Small amounts of acetoin, acetolactate, alanine, leucine, isoleucine, and valine were also detected. CH4 was not formed. The molar growth yield (Yacetate) was about 9 g of cells (dry weight) per mol of acetate, indicating an ATP yield of about 1 mol/mol of acetate formed. Growth on pyruvate in the presence of BES was limited; after six to eight generations, the doubling times increased and the final cell densities decreased. After 9 to 11 generations, growth stopped completely. In the presence of BES, suspensions of pyruvate-grown cells fermented pyruvate to acetate, CO2, and H2. CH4 was not formed. Conversion of pyruvate to acetate, in the complete absence of methanogenesis, was coupled to ATP synthesis. Dicyclohexylcarbodiimide, an inhibitor of H(+)-translocating ATP synthase, did not inhibit ATP formation. In the presence of dicyclohexylcarbodiimide, stoichiometries of up to 0.9 mol of ATP per mol of acetate were observed. The uncoupler arsenate completely inhibited ATP synthesis, while the rates of acetate, CO2, and H2 formation were stimulated up to fourfold. Cell extracts of M. barkeri grown on pyruvate under nonmethenogenic conditions contained pyruvate: ferredoxin oxidoreductase (0.5 U/mg), phosphate acetyltransferase (12 U/mg), and acetate kinase (12 U/mg). From these data it is concluded that ATP was synthesized by substrate level phosphorylation during growth of the M. barkeri mutant on pyruvate in the absence of methanogenesis. This is the first report of growth of a methanogen under nonmethanogenic conditions at the expense of a fermentative energy metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Betaine: New Oxidant in the Stickland Reaction and Methanogenesis from Betaine and l-Alanine by a Clostridium sporogenes-Methanosarcina barkeri Coculture.

Growing and nongrowing cells of Clostridium sporogenes fermented betaine with l-alanine, l-valine, l-leucine, and l-isoleucine as electron donors in a coupled oxidation-reduction reaction (Stickland reaction). For the substrate combinations betaine and l-alanine and betaine and l-valine balance studies were performed; the results were in agreement with the following fermentation equation: 1 R- ...

متن کامل

Genetic, Genomic, and Transcriptomic Studies of Pyruvate Metabolism in Methanosarcina barkeri Fusaro.

UNLABELLED Pyruvate, a central intermediate in the carbon fixation pathway of methanogenic archaea, is rarely used as an energy source by these organisms. The sole exception to this rule is a genetically uncharacterized Methanosarcina barkeri mutant capable of using pyruvate as a sole energy and carbon source (the Pyr(+) phenotype). Here, we provide evidence that suggests that the Pyr(+) mutant...

متن کامل

Loss of the mtr operon in Methanosarcina blocks growth on methanol, but not methanogenesis, and reveals an unknown methanogenic pathway.

In the methanogenic archaeon Methanosarcina barkeri Fusaro, the N5-methyl-tetrahydrosarcinapterin (CH3-H4SPT):coenzyme M (CoM) methyltransferase, encoded by the mtr operon, catalyzes the energy-conserving (sodium-pumping) methyl transfer from CH3-H4SPT to CoM during growth on H2/CO2 or acetate. However, in the disproportionation of C-1 compounds, such as methanol, to methane and carbon dioxide,...

متن کامل

Methanogenesis from Choline by a Coculture of Desulfovibrio sp. and Methanosarcina barkeri.

A sulfate-reducing vibrio was isolated from a methanogenic enrichment with choline as the sole added organic substrate. This organism was identified as a member of the genus Desulfovibrio and was designated Desulfovibrio strain G1. In a defined medium devoid of sulfate, a pure culture of Desulfovibrio strain G1 fermented choline to trimethylamine, acetate, and ethanol. In the presence of sulfat...

متن کامل

Bioenergetics of methanogenesis from acetate by Methanosarcina barkeri.

Methane formation from acetate by resting cells of Methanosarcina barkeri was accompanied by an increase in the intracellular ATP content from 0.9 to 4.0 nmol/mg of protein. Correspondingly, the proton motive force increased to a steady-state level of -120 mV. The transmembrane pH gradient however, was reversed under these conditions and amounted to +20 mV. The addition of the protonophore 3,5,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 177 8  شماره 

صفحات  -

تاریخ انتشار 1995